1.5 - Coordination Games \& Multiple

Equilibria

ECON 316 • Game Theory • Fall 2021
Ryan Safner
Assistant Professor of Economics
4.safner@hood.edu

Outline

Coordination Games

Multiple Equilibria
Rationalizability and the Role of Beliefs

Coordination Games

Coordination Games

- This semester, we are dealing with noncooperative games where each player acts independently
- In coordination games, players don't necessarily have conflicting interests
- Often positive-sum games
- Often have more than one, or zero, Pure Strategy Nash equilibria (PSNE)

Pure Coordination Game

- Pure coordination game: does not matter which strategy players choose, so long as they choose the same!

Pure Coordination Game

- Pure coordination game: does not matter which strategy players choose, so long as they choose the same!
- Two Pure Strategy Nash Equilibria:

1. (Whitaker, Whitaker)

2. (Starbucks, Starbucks)

Pure Coordination Game

- The flat tire game from before is also a pure coordination game
- Four PSNE:

1. (Front L, Front L)
2. (Front R, Front R)
3. (Rear L, Rear L)
4. (Rear R, Rear R)

Coordination Games: Focal Points

- Without pre-game communication, expectations must converge on a focal point
- A major idea in Thomas Schelling's work, we often call them "Schelling points"

Thomas Schelling

1921-2016
Economics Nobel 2005

Coordination Games: Focal Points

Thomas Schelling
1921-2016

Economics Nobel 2005
"[I]t is instructive to begin with the...case in which two or more parties have identical interests and face the problem not of reconciling interests but only of coordinating their actions for their mutual benefit, when communication is impossible."
"When a man loses his wife in a department store without any prior understanding on where to meet if they get separated, the chances are good that they will find each other. It is likely that each will think of some obvious place to meet, so obvious that each will be sure that the other is sure that it is 'obvious' to both of them. One does not simply predict where the other will go, since the other will go where he predicts the first to go, which is wherever the first predicts the second to predict the first to go, and so ad infinitum."

Coordination Games: Focal Points

Thomas Schelling
"What is necessary is to coordinate predictions, to read the same message in the common situation, to identify the one course of action that their expectations of each other can converge on. They must 'mutually recognize' some unique signal that coordinates their expectations of each other. We cannot be sure that they will meet, nor would all couples read the same signal; but the chances are certainly a great deal better than if they pursued a random course of search." (p.54).
1921-2016

Economics Nobel 2005

Coordination Games: Focal Points

Example

- If we both pick the same square (without communicating), we each get \$100

Coordination Games: Focal Points

Example

- If we both pick the same square (without communicating), we each get \$100

Assurance Games

- "Assurance" game: a special case of coordination game where one equilibrium is universally preferred
- Here, both prefer (Whit, Whit) over (SB, SB)

Assurance Games

- "Assurance" game: a special case of coordination game where one equilibrium is universally preferred
- Here, both prefer (Whit, Whit) over (SB, SB)
- Still two PSNE

1. (Whit, Whit)
2. $(S B, S B)$

- Players get their preferred outcome only if each has enough assurance the other

Assurance Games: A Famed Example

$\begin{array}{\|l\|l} \hline \sim & ! \\ \sim & 1 \end{array}$	@			\$		\%		$\hat{6}$		\& 7		*		1 9)		[${ }^{\text {3 }}$		ckspace
Tab $\xrightarrow{\longrightarrow}$					P		Y		F		G		C		R			?	$+$	I
Caps Lock A	A	0		E		U	I		D		H		T		N		S	-	Enter	
$\stackrel{\text { Shift }}{4}$;		Q		J	K		X		B		M		W	V			Z Shift	Shift	
Ctrl	$\underset{\text { Kin }}{\substack{\text { Win }}}$	Alt														Alt Gr		$\underset{\text { Key }}{\underset{\text { Win }}{ }}$	Menu	Ctrl

Assurance Games: Path Dependence \& Lock-In

- Suppose all agree Dvorak is superior
- But not guaranteed to be the outcome!
- Path Dependence: early choices may affect later ability to choose or switch
- Lock-in: the switching cost of moving from one equilibrium to another becomes prohibitive

Column

Assurance Games: Path Dependence \& Lock-In

Clio and the Economics of QWERTY
By Paul A. David*

Cicero demands of historians, first, that we tell true stories. I intend fully to perform my duty on this occasion, by giving you a homely piece of narrative economic history in which "one damn thing follows another." The main it is sometimes not possible to uncover the logic (or illogic) of the world around us except by understanding how it got that way. A path-dependent sequence of economic changes is one of which important influences upon the eventual outcome can be exerted by temporally remote events, including happenings dominated by chance elements rather than systematic forces. Stochastic processes like that do not converge automatically to a called non-ergodic. In such circumstances "historical accidents" can neither be ignored nor neatly quarantined for the purpose of nor neatly quarantined for the purpose of economic analysis; the dynamic process itself Standing alone, my story will be simply illustrative and does not establish how much of the world works this way. That is an open empirical issue and I would be presumptuous to claim to have settled it, or to instruct you in what to do about it. Let us just hope the tale proves mildly diverting for those waiting to be told if and why the study of economic history is a necessity in the making of economists.

I. The Story of QWERTY

Why does the topmost row of letters on your personal computer keyboard spell out QWERTYUIOP, rather than something
else? We know that nothing in the engineering of computer terminals requires the awkward keyboard layout known today as "QWERTY," and we all are old enough to remember that QWERTY somehow has been handed down to us from the Age of Typewriters. Clearly nobody has been persuaded by the exhortations to discard QWERTY, which apostles of DSK (the Dvorak Simplified Keyboard) were issuing in trade publications such as Computers and Automation during the early 1970 's. Why not? Devotees 1932 by August Dvorak and W. L. Dealey have long held most of the world's records for speed typing. Moreover, during the 1940's U.S. Navy experiments had shown that the increased exficiency obtained with DSK would amortize the cost of retraining a group of typists within the first ten days of their subsequent full-time employment. Dvorak's death in 1975 released him from forty years of frustration with the world's stubborn rejection of his contribution; it came too soon for him to be solaced by the Apple IIC computer's built-in switch, which instantly converts its keyboard from QWERTY to virtual DSK, or to be further aggravated by
doubts that the switch would not often be

Assurance Games: Path Dependence \& Lock-In

- "First-degree" path dependency:
- Sensitivity to initial conditions
- But no inefficiency
- Examples:
- language
- driving on left vs. right side of road

Column

Assurance Games: Path Dependence \& Lock-In

- "Second-degree" path dependency:
- Sensitivity to initial conditions
- Imperfect information at time of choice
- Outcomes are regrettable expost

- Not inefficient: no better decision could have been made at the time

Assurance Games: Path Dependence \& Lock-In

- "Third-degree" path dependency:
- Sensitivity to initial conditions
- Worse choice made
- Avoidable mistake at the time
- Inefficient lock-in

Column

Assurance Games: Path Dependence \& Lock-In

Table 2
An Example: Adoption Payoffs for Homogeneous Agents

Number of previous adoptions	0	10	20	30	40	50	60	70	80	90	100
Technology A	10	11	12	13	14	15	16	17	18	19	20
Technology B	4	7	10	13	16	19	22	25	28	31	34

Arthur, W. Brian, 1989, "Competing Technologies, Increasing Returns, and Lock-In by

Historical Events," Economic Journal 99(394): 116-131

- In the long-run, Technology B is superior
- But in the short-run, Technology A has higher payoffs
- Inefficient lock-in
- But what about uncertainty?
- What set of institutions will choose best under uncertainty?

Assurance Games: Path Dependence \& Lock-In

Table 2
An Example: Adoption Payoffs for Homogeneous Agents

Number of previous adoptions	0	10	20	30	40	50	60	70	80	90	100
Technology A	10	11	12	13	14	15	16	17	18	19	20
Technology B	4	7	10	13	16	19	22	25	28	31	34

Arthur, W. Brian, 1989, "Competing Technologies, Increasing Returns, and Lock-In by

Historical Events," Economic Journal 99(394): 116-131

- Role for entrepreneurial judgment and
"championing" a standard
- Someone who "owns" a standard has strong incentive to see it adopted
- Champions who forecast higher longterm payoffs can subsidize adoption in the short run

Assurance Games: Path Dependence \& Lock-In

- September 3, 1967, "H day" in Sweden
- Högertrafikomläggningen: "right-hand traffic diversion"
- Sweden switched from driving on the left side of the road to the right
- Both of Sweden's neighbors drove on the right, 5 million vehicles/year crossing borders

Assurance Games: Stag Hunt

- Famous variant: the "Stag Hunt"
"If it was a matter of hunting a deer, everyone well realized that he must remain faithful to his post; but if a hare happened to pass within reach of one of them, we cannot doubt that he would have
 gone off in pursuit without scruple."

Assurance Games: Stag Hunt

- Often invoked to discuss public goods, free rider problems
- Two PSNE, and (Stag, Stag) $>$ (Hare, Hare)
- Can't take down a Stag alone, need to rely on a group to work together
- But unlike prisoners' dilemma, no incentive to overtly "screw over" the group

Column

Prisoners' Dilemma vs. Assurance/Stag Hunt

Column

- Dominant strategy to always Defect
- Nash equilibrium: (Defect, Defect)
- (Coop, Coop) $>$ (Defect, Defect)
- (Coop, Coop) not a Nash equilibrium

Column

- No dominant or dominated strategies
- 2 NE: (Coop, Coop) and (Defect, Defect)
- (Coop, Coop) $>$ (Defect, Defect)
- Can get stuck in (Defect, Defect) but (Coop, Coop) is stable \& possible

Battle of the Sexes

- Each player prefers a different Nash equilibrium over another
- But coordinating is better than notcoordinating, for both!

Battle of the Sexes

- Each player prefers a different Nash equilibrium over another
- But coordinating is better than notcoordinating, for both!
- Two PSNE:

1. (Hockey, Hockey) - Harry's preference
2. (Ballet, Ballet) - Sally's preference

Chicken

- Two strategies per player: act tough/cool vs. weak
- Each prefers to act tough and have the other player act weak
- But if both act tough, the worst outcome for both
- Often called an "anti-coordination" game

Chicken

- A common example in movies
- Two cars aimed at each other, or racing furthest to edge of cliff

Chicken

- A common example in movies
- Two cars aimed at each other, or racing furthest to edge of cliff
- Two PSNE:

1. (Straight, Swerve) - Row's preference
2. (Swerve, Straight) - Column's preference

- So long as both choose different strategies, avoids worst outcome

Column

Chicken

\square

Chicken

\square

Chicken and Commitment

- Each player may try to influence the game beforehand
- Project and signal "toughness" (or that they are "crazy") before the game
- Find a commitment strategy so you have

Column
 no choice but to play tough

- e.g. rip out the steering wheel!
- Schelling: "If you're invited to play chicken and you decline, you've already played [and lost]"

Chicken: Hawk Dove

- One variant of chicken is also famous:

Hawk-Dove game

- (actually, chicken is just a special case of hawk dove!)
- Evolutionary biology, political science, bargaining

Column

Game Types

Prisoners' Dilemma

Column

Row

	A		B
A	3	3	1
		3	4
B	4	4	2
		1	2

Coordination

Column

Assurance

Column

	A		B
A	2	2	0
		2	0
B		0	1
		0	1

Battle of the Sexes
Column

Stag Hunt
Column

Chicken

Column

	A	B
A	0	-1
	0	1
B	1	-2
	-1	-2

Modeling Social Interactions

- Can all players potentially benefit from the interaction?
- No: chicken
- Do all players prefer one outcome over another?
- Yes: assurance game
- Does the players prefer different outcomes?
- Yes: battle of the sexes
- Is there a Pareto improvement from Nash equilibrium?
- Yes: assurance game
- Yes, but it's not a NE: prisoners' dilemma

Multiple Equilibria

Multiple Equilibria: What to Do?

- Nash equilibrium is the most well known solution concept in game theory
- Method of predicting the outcome of a game
- Suppose we have a coordination game with multiple equilibria
- What can we say about behavior of players?

Multiple Equilibria: What to Do?

- One answer: nothing!
- Both equilibria are mutual best responses
- Coordination problem on which strategy to jointly select
- Two sides of the road to drive on, no one side better than the other

Multiple Equilibria: What to Do?

- Another answer: we must confront multiple equilibria in economics
- still want to predict which outcome will occur
- We need to consider multiple criteria beyond best responses to select a plausible equilibrium
- Focalness/salience
- Fairness/envy-free-ness
- Efficiency/payoff dominance
- Risk dominance

Multiple Equilibria: Efficiency

- Which equilibrium is most (Pareto) efficient?
- Must be no other equilibrium where at least one player earns a higher payoff and no player earns a lower payoff
- Stag Hunt:
- Both (Stag, Stag) and (Hare, Hare) are Nash equilibria
- (Stag, Stag) is Pareto superior to (Hare, Hare)

Multiple Equilibria: Efficiency

- Consider the "Pittsburgh Left" game

Column

	Straight		Yield	
	Left	-10		

Multiple Equilibria: Efficiency

- Consider the "Pittsburgh Left" game
- Two PSNE: (Left, Yield) and (Yield, Straight)
- Each driver prefers that the other
yield
- This is just a variant of Chicken
- Both equilibria are Pareto efficient!

Multiple Equilibria: Efficiency

- We often face multiple Pareto efficient equilibria
- Sometimes institutions are created to select and enforce a particular equilibrium

Column

LEFT TURN YIELD ON GREEN

Multiple Equilibria: Risk Dominance

- Consider a Stag Hunt

Column

- (Stag, Stag) is efficient and "payoff dominant"
- Highest payoff for each player, no possible Pareto improvement

- (Hare, Hare) is "risk dominant"
- A less-risky equilibrium
- By playing Hare, each player guarantees themself 1 regardless of other player's strategy

Rationalizability \& the Role of Beliefs

The Role of Beliefs

- Consider the following game

Column

Row	Up	Left		Right	
		9		8	
			10		9.99
	Down	10		-1000	
			10		9.99

The Role of Beliefs

- Consider the following game

Column

- Column has a dominant strategy to always play Left
- Given this, Row should play Down
- Unique Nash equilibrium: (Down, Left)

The Role of Beliefs

- If you were playing as Row, would you risk playing Down if you believed there was the slightest chance that Column would play Right?

Column
Left

Nash Equilibrium and Beliefs

- Nash equilibrium requires players to have accurate beliefs about each others' actions

1. Each player should choose the strategy with the highest-payoff given their beliefs about the other player's (choice of) strategy
2. These beliefs should be correct, i.e. match what the other players actually do

Nash Equilibrium and Beliefs

- Rationalizable game outcomes are a more general solution concept than Nash equilibrium
- Allows for variations in beliefs
- Nash equilibria are a subset of rationalizable outcomes
- Where players' maximize their payoff and their beliefs happen to be correct

Rationalizability

- Consider the following game

		Left	Column Middle	Right
	Left	0	2	7
		7	5	0
Row	Middle	5	3	5
		2	3	2
	Right	7	2	0
		0	5	7

Rationalizability

- Consider the following game
- Solved using best response analysis, we see a unique Nash equilibrium: (Middle, Middle)

Rationalizability

- Row plays Middle because she believes Column will rationally play Middle (who plays that because he believes that Row will play Middle)...
- But players can also rationalize other possibilities

		Left	Column Middle	Right
	Left	0	2	7
		$\underline{7}$	5	0
Row	Middle	5	$\underline{3}$	5
		2	3	2
	Right	$\underline{7}$	2	0
		0	5	7

Rationalizability

- For example, Row can rationalize playing Left
- If she thinks Column will play Right, then playing Left is her best response
- Column can rationalize playing Right

- If he thinks Row will play Right, then playing Right is his best response
- Similarly, we can rationalize many game outcomes under certain beliefs that players have

Rationalizability

- In this particular game (i.e. not every game!), all 9 outcomes are rationalizable!
(1) (Left, Left): Row will play Left if she believes Column will play Right; Column will play Left if he believes Row will play Left
(2) (Left, Middle): Row will play Left if she believes Column will play Right; Column will play Middle if he believes Row will play Middle
(3) (Left, Right): Row will play Left if she believes

Column will play Right; Column will play Right if he believes Row will play Right

Rationalizability

- In this particular game (i.e. not every game!), all 9 outcomes are rationalizable!
(4) (Middle, Left): Row will play Middle if she believes Column will play Middle; Column will play Left if he believes Row will play Left
(5) (Middle, Middle): Row will play Middle if she believes Column will play Middle; Column will play Middle if he believes Row will play Middle
(6) (Middle, Right): Row will play Middle if she believes Column will play Middle; Column will play Right if he believes Row will play Right

Rationalizability

- In this particular game (i.e. not every game!), all 9 outcomes are rationalizable!
(7) (Right, Left): Row will play Right if she believes Column will play Left; Column will play Left if he believes Row will play Left
(8) (Right, Middle): Row will play Right if she believes Column will play Left; Column will play Middle if he believes Row will play Middle
(9) (Right, Right): Row will play Right if she believes Column will play Left; Column will play Right if he believes Row will play Right

Rationalizability and Best Reponses

- What is key here is that players can rationalize playing a strategy if it is a best response to at least one strategy
- Inversely, if a strategy is never a best response, playing it is not rationalizable
- For this game, since each strategy is

		Left	Column	
	Left	0	2	$\underline{7}$
		$\underline{7}$	5	0
Row	Middle	5	$\underline{3}$	5
		2	3	2
	Right	$\underline{7}$	2	0
		0	5	-

Rationalizability and Best Responses

- Rationalizability can sometimes find us the Nash equilibrium
- Consider the game with some different payoffs

		Left	Column Middle	Right
	Left	3	0	2
		2	3	0
Row	Middle	1	2	1
		3	0	2
	Right	2	4	0
		1	3	2

Rationalizability and Best Responses

- Rationalizability can sometimes find us the Nash equilibrium
- Consider the game with some different payoffs
- First, find all best responses

		Left	Column Middle	Right
	Left	3	0	$\underline{2}$
		2	3	0
Row	Middle	1	2	1
		3	0	2
	Right	2	4	0
		1	3	2

Rationalizability and Best Responses

- Rationalizability can sometimes find us the Nash equilibrium
- Consider the game with some different payoffs
- First, find all best responses, and next delete all strategies that are never a

		Left	Column Middle	Right
	Left	3	0	2
		2	3	0
Row	Middle	1	2	1
		3	0	2
	Right	2	4	0
		1	3	2

Rationalizability and Best Responses

- Rationalizability can sometimes find us the Nash equilibrium
- Consider the game with some different payoffs
- First, find all best responses, and next delete all strategies that are never a
 best response
- Note here there are no strictly dominated strategies!

Rationalizability and Best Responses

- Rationalizability can sometimes find us the Nash equilibrium
- Consider the game with some different payoffs
- First, find all best responses, and next delete all strategies that are never a
 best response
- Note here there are no strictly dominated strategies!
- For Row, playing Middle is never a best response

Rationalizability and Best Responses

- Now we see Column will not play Left

Rationalizability and Best Responses

- Now we see Row will not play Left

Column
Middle

Rationalizability and Best Responses

- This brings us to the outcome that is the Nash equilibrium: (Right, Middle)

Column
 Middle

Rationalizability and Best Responses

- This brings us to the outcome that is the Nash equilibrium: (Right, Middle)

	Left	$\underline{1}$		0		$\underline{2}$	
			2		3		0
Row	Middle	1		2		1	
			3		0		2
	Right	2		4		0	
			1		$\underline{3}$		2

Rationalizability and Best Responses

- We will examine the role of beliefs much more rigorously later in the semester when we consider games with incomplete information and Bayesian games (and a whole separate set of solution concepts!)

