2.4 — Stackelberg Competition

ECON 316 • Game Theory • Fall 2021

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/gameF21
- gameF21.classes.ryansafner.com

Models of Oligopoly

Three canonical models of Oligopoly

1. Bertrand competition

Firms simultaneously compete on price

2. Cournot competition

Firms simultaneously compete on quantity

3. Stackelberg competition

Firms sequentially compete on quantity

Stackelberg Competition

Henrich von Stackelberg

- "Stackelberg competition": Cournot-style competition, two (or more) firms compete on quantity to sell the same good
- Again, firms' joint output determines the market price faced by all firms
- But firms set their quantities **sequentially**
 - Leader produces first
 - Follower produces second

1905-1946

Example: Return to Saudi Arabia (sa) and Iran (i), again with the market (inverse) demand curve:

$$P = 200 - 3Q$$
$$Q = q_{sa} + q_i$$

• We solved for Saudi Arabia and Iran's reaction functions in Cournot competition last class:

$$q_{sa}^* = 30 - 0.5q_i$$
$$q_i^* = 30 - 0.5q_{sa}$$

$$q_{sa}^* = 30 - 0.5q_i$$

 $q_i^* = 30 - 0.5q_{sa}$

- Suppose Saudi Arabia is the Stackelberg leader and produces q_{sa} first
- Saudi Arabia knows exactly how Iran will respond to its output

$$q_i^* = 30 - 0.5q_{sa}$$

- Saudi Arabia, as leader, essentially faces entire market demand
 - But can't act like a pure monopolist!
 - knows that follower will still produce afterwards, which pushes down market price for both firms!

 Substitute follower's reaction function into (inverse) market demand function faced by leader

$$P = 200 - 3q_{sa} - 3(30 - 0.5q_{sa})$$

$$P = 110 - 1.5q_{sa}$$

• Now find MR(q) for Saudi Arabia from this by doubling the slope:

$$MR_{Leader} = 110 - 3q_{sa}$$

• Now Saudi Arabia can find its optimal quantity:

$$MR_{Leader} = MC$$

$$110 - 3q_{sa} = 20$$

$$30 = q_{sa}^*$$

• Iran will optimally respond by producing:

$$q_i^* = 30 - 0.5q_{sa}$$
 $q_i^* = 30 - 0.5(30)$
 $q_i^* = 15$

Stackelberg Equilibrium, Graphically

• Stackelberg Nash Equilibrium:

$$(q_{sa}^* = 30, q_i^* = 15)$$

• With $q_{sa}^* = 30$ and $q_i^* = 15$, this sets a market-clearing price of:

$$P = 200 - 3(45)$$

 $P = 65$

• Saudi Arabia's profit would be:

$$\pi_{sa} = 30(65 - 20)$$

$$\pi_{sa} = \$1,350$$

• Iran's profit would be:

$$\pi_i = 15(65 - 20)$$
 $\pi_i = \$675$

Stackelberg Equilibrium, The Market

Cournot vs. Stackelberg Competition

	C	ournot	Stackelberg (p*=\$65)					
	(p	o*=\$80)						
Firm	Output	Profit	Output	Profit				
Saudi Arabia	20	\$1,200	30	\$1,350				
Iran	20	\$1,200	15	\$675				
Industry	40	\$2,400	45	\$2,025				

- **Leader** Saudi Arabia ↑ its output and ↑ profits
- **Follower** Iran forced to ↓ its output and accept ↓ profits

Stackelberg and First-Mover Advantage

 Stackelberg leader clearly has a firstmover advantage over the follower

 \circ Leader: $q^* = 30$, $\pi = 1,350$

• **Follower**: $q^* = 15$, $\pi = 675$

• If firms compete **simultaneously** (Cournot): $q^* = 20$, $\pi = 1,200$ each

• Leading ➤ simultaneous ➤ Following

Stackelberg and First-Mover Advantage

- Stackelberg Nash equilibrium requires perfect information for both leader and follower
 - Follower must be able to **observe** leader's output to choose its own
 - Leader must **believe** follower will see leader's output and react optimally
- Imperfect information reduces the game to (simultaneous) Cournot competition

Stackelberg and First-Mover Advantage

- Again, leader cannot act like a monopolist
 - A strategic game! Market output (that pushes down market price) is $Q = q_{sa} + q_i$
- Leader's choice of 30 is optimal only if follower responds with 15

Comparing All Oligopoly Models

		Bertrand			Cournot			Stackelberg			Collusion		
Country	q	р	π	q	р	π	q	р	π	q	р	π	
Saudi Arabia	30	\$20	\$0	20	\$80	\$1,200	30	\$65	\$1,350	15	\$110	\$1,350	
Iran	30	\$20	\$0	20	\$80	\$1,200	15	\$65	\$675	15	\$110	\$1,350	
Industry	60	\$20	\$0	40	\$80	\$2,400	45	\$65	\$2,025	30	\$110	\$2,700	

• Output: $Q_m < Q_c < Q_s < Q_b$

• Market price: $P_b < P_s < P_c < P_m$

• Profit: $\pi_b = 0 < \pi_s < \pi_c < \pi_m$

Where subscript m is monopoly (collusion), c is Cournot, s is Stackelberg, b is Bertrand

Stackelberg Competition: Moblab

Stackelberg Competition: Moblab

- Each of you is one Airline competing against another in a duopoly
 - Each pays same per-flight cost
 - Market price determined by total number of flights in market
- **LeadAir** first chooses its number of flights, publicly announced
- **FollowAir** then chooses its number of flights