2.4 - Stackelberg Competition

 ECON 316 • Game Theory • Fall 2021 Ryan SafnerAssistant Professor of Economics

, safner@hood.edu

Q ryansafner/gameF21
Q. gameF21.classes.ryansafner.com

Models of Oligopoly

Three canonical models of Oligopoly

1. Bertrand competition

- Firms simultaneously compete on price

2. Cournot competition

- Firms simultaneously compete on quantity

3. Stackelberg competition

- Firms sequentially compete on quantity

Stackelberg Competition

- "Stackelberg competition": Cournot-style competition, two (or more) firms compete on quantity to sell the same good
- Again, firms' joint output determines the market price faced by all firms
- But firms set their quantities sequentially
- Leader produces first
- Follower produces second

Henrich von Stackelberg

Stackelberg Competition: Example

Example: Return to Saudi Arabia ($s a$) and Iran (i), again with the market (inverse) demand curve:

$$
\begin{aligned}
& P=200-3 Q \\
& Q=q_{s a}+q_{i}
\end{aligned}
$$

- We solved for Saudi Arabia and Iran's reaction functions in Cournot competition last class:

$$
\begin{aligned}
q_{s a}^{*} & =30-0.5 q_{i} \\
q_{i}^{*} & =30-0.5 q_{s a}
\end{aligned}
$$

Stackelberg Competition: Example

$$
\begin{aligned}
q_{s a}^{*} & =30-0.5 q_{i} \\
q_{i}^{*} & =30-0.5 q_{s a}
\end{aligned}
$$

- Suppose Saudi Arabia is the Stackelberg leader and produces $q_{s a}$ first
- Saudi Arabia knows exactly how Iran will respond to its output

$$
q_{i}^{*}=30-0.5 q_{s a}
$$

- Saudi Arabia, as leader, essentially faces entire market demand
- But can't act like a pure monopolist!
- knows that follower will still produce afterwards, which pushes down market price for both firms!

Stackelberg Competition: Example

- Substitute follower's reaction function into (inverse) market demand function faced by leader

$$
\begin{aligned}
& P=200-3 q_{s a}-3\left(30-0.5 q_{s a}\right) \\
& P=110-1.5 q_{s a}
\end{aligned}
$$

- Now find $M R(q)$ for Saudi Arabia from this by doubling the slope:

$$
M R_{\text {Leader }}=110-3 q_{s a}
$$

Stackelberg Competition: Example

- Now Saudi Arabia can find its optimal quantity:

$$
\begin{aligned}
M R_{\text {Leader }} & =M C \\
110-3 q_{s a} & =20 \\
30 & =q_{s a}^{*}
\end{aligned}
$$

- Iran will optimally respond by producing:

$$
\begin{aligned}
& q_{i}^{*}=30-0.5 q_{s a} \\
& q_{i}^{*}=30-0.5(30) \\
& q_{i}^{*}=15
\end{aligned}
$$

Stackelberg Equilibrium, Graphically

- Stackelberg Nash Equilibrium:

$$
\left(q_{s a}^{*}=30, q_{i}^{*}=15\right)
$$

Stackelberg Competition: Example

- With $q_{s a}^{*}=30$ and $q_{i}^{*}=15$, this sets a market-clearing price of:

$$
\begin{aligned}
& P=200-3(45) \\
& P=65
\end{aligned}
$$

- Saudi Arabia's profit would be:

$$
\begin{aligned}
& \pi_{s a}=30(65-20) \\
& \pi_{s a}=\$ 1,350
\end{aligned}
$$

- Iran's profit would be:

$$
\begin{aligned}
& \pi_{i}=15(65-20) \\
& \pi_{i}=\$ 675
\end{aligned}
$$

Stackelberg Equilibrium, The Market

Cournot vs. Stackelberg Competition

	Cournot $\left(p^{*}=\$ 80\right)$			Stackelberg $\left(p^{*}=\$ 65\right)$	
					Profit
Firm	Output	Profit		Output	$\$ 1,350$
Saudi Arabia	20	$\$ 1,200$		30	$\$ 675$
Iran	20	$\$ 1,200$		15	$\$ 2,025$

- Leader Saudi Arabia \uparrow its output and \uparrow profits
- Follower Iran forced to \downarrow its output and accept \downarrow profits

Stackelberg and First-Mover Advantage

- Stackelberg leader clearly has a firstmover advantage over the follower
- Leader: $q^{*}=30, \pi=1,350$
- Follower: $q^{*}=15, \pi=675$
- If firms compete simultaneously (Cournot): $q^{*}=20, \pi=1,200$ each
- Leading $>$ simultaneous $>$ Following

Stackelberg and First-Mover Advantage

- Stackelberg Nash equilibrium requires perfect information for both leader and follower
- Follower must be able to observe leader's output to choose its own
- Leader must believe follower will see leader's output and react optimally
- Imperfect information reduces the game to (simultaneous) Cournot competition

Stackelberg and First-Mover Advantage

- Again, leader cannot act like a monopolist
- A strategic game! Market output (that pushes down market price) is

$$
Q=q_{s a}+q_{i}
$$

- Leader's choice of 30 is optimal only if follower responds with 15

Comparing All Oligopoly Models

	Bertrand			Cournot			Stackelberg			Collusion		
Country	q	p	π	q	p	π	q	p	π	q	p	π
Saudi Arabia	30	\$20	\$0	20	\$80	\$1,200	30	\$65	\$1,350	15	\$110	\$1,350
Iran	30	\$20	\$0	20	\$80	\$1,200	15	\$65	\$675	15	\$110	\$1,350
Industry	60	\$20	\$0	40	\$80	\$2,400	45	\$65	\$2,025	30	\$110	\$2,700

- Output: $Q_{m}<Q_{c}<Q_{s}<Q_{b}$
- Market price: $P_{b}<P_{s}<P_{c}<P_{m}$
- Profit: $\pi_{b}=0<\pi_{s}<\pi_{c}<\pi_{m}$

Where subscript m is monopoly (collusion), c is Cournot, s is Stackelberg, b is Bertrand

Stackelberg Competition: Moblab

Stackelberg Competition: Moblab

- Each of you is one Airline competing against another in a duopoly
- Each pays same per-flight cost
- Market price determined by total number of flights in market
- LeadAir first chooses its number of flights, publicly announced
- FollowAir then chooses its number of flights

