3.2 - Repeated Games

ECON 316 • Game Theory • Fall 2021 Ryan Safner
Assistant Professor of Economics

, safner@hood.edu

Q ryansafner/gameF21
Q. gameF21.classes.ryansafner.com

Outline

When Pure Strategies Won't Work

MSNE in Constant Sum Games
Coordination Games: PSNE and MSNE

Prisoners' Dilemma, Reprise

Prisoners' Dilemma, Reprise

Prisoners' Dilemma, Reprise

- Not technically a Prisoners' Dilemma!
- Game affected by Joker's threat to blow both of them up at midnight if nobody acts
- Both players have a weakly-dominant

$\frac{n}{\frac{n}{E}}$	Detonate	Detonate		Nothing	
		-100		0	
			-100		-100
	Nothing	-100		-100	
			0		-100

- What is/are the Nash equilibrium/equilibria?

Prisoners' Dilemma, Reprise

- A true prisoners' dilemma:

$$
a>b>c>d
$$

- Each player's preferences:
- $1^{\text {st }}$ best: you Defect, they Coop. ("temptation payoff")
- $2^{\text {nd }}$ best: you both Coop.
- $3^{\text {rd }}$ best: you both Defect
- $4^{\text {th }}$ best: you Coop., they Defect ("sucker's payoff")
- Nash equilibrium: (Defect, Defect)
- (Coop., Coop.) an unstable Pareto improvement

Player 2

Prisoners' Dilemma: How to Sustain Cooperation?

- We'll stick with these specific payoffs for this lesson
- How can we sustain cooperation in Prisoners' Dilemma?

Repeated Games

Repeated Games: Finite and Infinite

- Analysis of games can change when players encounter each other more than once
- Repeated games: the same players play the same game multiple times, two types:
- Players know the history of the game with each other
- Finitely-repeated game: has a known final round
- Infinitely-repeated game: has no (or an
 unknown) final round

Finitely-Repeated Games

Finitely-Repeated Prisoners' Dilemma

- Suppose a prisoners' dilemma is played for 2 rounds
- Apply backwards induction:
- What should each player do in the final round?

Finitely-Repeated Prisoners' Dilemma

- Suppose a prisoners' dilemma is played for 2 rounds
- Apply backwards induction:
- What should each player do in the final round?
- Play dominant strategy: Defect
- Knowing each player will Defect in round $2 / 2$, what should they do in round 1?

Finitely-Repeated Prisoners' Dilemma

- Suppose a prisoners' dilemma is played for 2 rounds
- Apply backwards induction:
- What should each player do in the final round?
- Play dominant strategy: Defect
- Knowing each player will Defect in round $2 / 2$, what should they do in round 1 ?
- No benefit to playing Cooperate
- No threat punish Defection!

Finitely-Repeated Prisoners' Dilemma

- Suppose a prisoners' dilemma is played for 2 rounds
- Apply backwards induction:
- Both Defect in round 1 (and round 2)

- No value in cooperation over time!

Finitely-Repeated Prisoners' Dilemma

- For any game with a unique PSNE in a one-shot game, as long as there is a known, finite end, Nash equilibrium is the same

Finitely-Repeated Prisoners' Dilemma

- In experimental settings, we tend to see people cooperate in early rounds, but close to the final round (if not the actual final round), defect on each other

Infinitely-Repeated Games

Infinitely-Repeated Games

- Finitely-repeated games are interesting, but rare
- How often do we know for certain when a game/relationship we are in will end?
- Some predictions for finitely-repeated games don't hold up well in reality
- Ultimatum game, prisoners' dilemma

- We often play games or are in relationships that are indefinitely repeated (have no known end), we call them infinitelyrepeated games

Infinitely-Repeated Games

- There are two nearly identical interpretations of infinitely repeated games:

1. Players play forever, but discount (payoffs in) the future by a constant factor
2. Each round the game might end with some constant probability

First Intepretation: Discounting the Future

- Since we are dealing with payoffs in the future, we have to consider players' time preferences
- Easiest to consider with monetary payoffs and the time value of money that underlies finance

$$
\begin{gathered}
P V=\frac{F V}{(1+r)^{t}} \\
F V=P V(1+r)^{t}
\end{gathered}
$$

Present vs. Future Goods

- Example: what is the present value of getting $\$ 1,000$ one year from now at 5% interest?

$$
\begin{aligned}
& P V=\frac{F V}{(1+r)^{n}} \\
& P V=\frac{1000}{(1+0.05)^{1}} \\
& P V=\frac{1000}{1.05} \\
& P V=\$ 952.38
\end{aligned}
$$

Present vs. Future Goods

- Example: what is the future value of $\$ 1,000$ lent for one year at 5% interest?

$$
\begin{aligned}
& F V=P V(1+r)^{n} \\
& F V=1000(1+0.05)^{1} \\
& F V=1000(1.05) \\
& F V=\$ 1050
\end{aligned}
$$

Discounting the Future

- Suppose a player values \$1 now as being equivalent to some amount with interest $1(1+r)$ one period later
- i.e. \$1 with an r\% interest rate over that period
- The "discount factor" is $\delta=\frac{1}{1+r}$, the ratio that future value must be multiplied to equal present value

Discounting the Future

$\$ 1$ now $=\delta \$ 1$ later

- If δ is low (r is high)
- Players regard future money as worth much less than present money, very impatient
- Example: $\delta=0.20$, future money is worth 20% of present money
- If δ is high (r is low)
- Players regard future money almost the same as present money, more patient
- Example: $\delta=0.80$, future money is worth
 80% of present money

Discounting the Future

Example: Suppose you are indifferent between having \$1 today and \$1.10 next period
$\$ 1$ today $=\delta \$ 1.10$ next period

$$
\begin{array}{r}
\frac{\$ 1}{\$ 1.10}=\delta \\
0.91 \approx \delta
\end{array}
$$

- There is an implied interest rate of $r=0.10$
- \$1 at 10\% interest yields \$1.10 next period

$$
\begin{aligned}
& \delta=\frac{1}{1+r} \\
& \delta=\frac{1}{1.10} \approx 0.91
\end{aligned}
$$

Discounting the Future

- Now consider an infinitely repeated game
- If a player receives payoff p in every future round, the present value of this infinite payoff stream is

$$
p\left(\delta+\delta^{2}+\delta^{3}+\cdots\right)
$$

- This is due to compounding interest over time
- This infinite sum converges to:

$$
\sum_{t=1}^{\infty}=\frac{p}{1-\delta}
$$

- Thus, the present discounted value of receiving p in every future round is $\left(\frac{p}{1-\delta}\right)$

Prisoners' Dilemma, Infinitely Repeated

- With these payoffs, the value of both cooperating forever is $\left(\frac{3}{1-\delta}\right)$
- Value of both defecting forever is $\left(\frac{2}{1-\delta}\right)$

Alternatively: Game Continues Probabilistically

- Alternate interpretation: game continues with some (commonly known among the players) probability θ each round
- Assume this probability is independent between rounds (i.e. one round continuing has no influence on the probability of the next round continuing, etc)

Alternatively: Game Continues Probabilistically

- Then the probability the game is played T rounds from now is θ^{T}
- A payoff of p in every future round has a present value of

$$
p\left(\theta+\theta^{2}+\theta^{3}+\cdots\right)=\left(\frac{p}{1-\theta}\right)
$$

- This is similar to discounting of future payoffs; equivalent if $\theta=\delta$

Strategies in Infinitely Repeated Games

- Recall, a strategy is a complete plan of action that describes how you will react under all possible circumstances (i.e. moves by other players)
- i.e. "if other player plays x, I'll play a, if they play y, I'll play b, if, ..., etc"
- think about it as a(n infinitely-branching) game tree, "what will I do at each node where it is my turn?"
- For an infinitely-repeated game, an infinite number of possible strategies exist!
- We will examine a specific set of contingent or trigger strategies

Trigger Strategies

- Consider one (the most important) trigger strategy for an infinitely-repeated prisoners' dilemma, the "Grim Trigger" strategy:
- On round 1: Cooperate
- Every future round: so long as the history of play has been (Coop, Coop) in every round, play Cooperate. Otherwise, play Defect forever.
- "Grim" trigger strategy leaves no room for forgiveness: one deviation triggers infinite punishment, like the sword of Damocles

Payoffs in Grim Trigger Strategy

- If you are playing the Grim Trigger strategy, consider your opponent's incentives:
- If you both Cooperate forever, you receive an infinite payoff stream of 3 per round

$$
3+3 \delta+3 \delta^{2}+3 \delta^{3}+\cdots+3 \delta^{\infty}=\frac{3}{1-\delta}
$$

Player 2

Payoffs in Grim Trigger Strategy

- This strategy is a Nash equilibrium as long there's no incentive to deviate:

Payoff to cooperation $>$ Payoff to one-time defection

$$
\begin{aligned}
\frac{3}{1-\delta} & >4+\frac{2 \delta}{1-\delta} \\
\delta & >0.5
\end{aligned}
$$

$$
\text { Player } 1
$$

Player 2

- If $\delta>0.5$, then player will cooperate and not defect

Payoffs in Grim Trigger Strategy

- $\delta>0.5$ is sufficient to sustain cooperation under the grim trigger strategy
- This is the most extreme strategy with the strongest threat

Payoffs in Grim Trigger Strategy

- Two interpretations of $\delta>0.5$ as a sufficient condition for cooperation:

1. δ as sufficiently high discount rate

- Players are patient enough and care about the future (reputation, etc), will not defect

2. δ as sufficiently high probability of repeat interaction

- Players expect to encounter each other again and play future games together

Player 2

Other Trigger Strategies

- "Grim Trigger" strategy is, well, grim: a single defection causes infinite punishment with no hope of redemption
- Very useful in game theory for understanding the "worst case scenario" or the bare minimum needed to sustain cooperation!
- Empirically, most people aren't playing this strategy in life
- Social cooperation hangs on by a thread: what if the other player makes a mistake? Or you mistakenly think they Defected?
- There are "nicer" trigger strategies

"Nicer" Strategies

- Consider a "Forgiving Trigger" strategy:
- On round 1: Cooperate
- Every future round: so long as the history of play has been (Coop, Coop) in every round, play Cooperate. Otherwise, play Defect for 3 rounds

Player 2

- Punishment, but lasts for 3 rounds, then reverts to Cooperation

"Nicer" Strategies

- Consider the "Tit for Tat" strategy:
- On round 1: Cooperate
- Every future round: Play the strategy that the other player played last round
- Example: if they Cooperated, play Cooperate; if they Defected, play Defect

"Nicer" Strategies

- Consider the "Tit for 2 Tats" strategy:
- On round 1: Cooperate
- Every future round: Cooperate, unless the other player has played Defect twice, then play Defect

The Evolution of Cooperation

- Research in explaining the evolution of cooperation
- Use prisoners' dilemma to describe human societies and evolutionary biology of animal behaviors
- Hosted a series of famous tournaments for experts to submit a strategy to play in an infinitely ${ }^{1}$ repeated prisoners' dilemma
"The contestants ranged from a 10-year-old computer hobbyist to professors of computer science, economics, psychology, mathematics, sociology, political science, and evolutionary biology."
- The Evolution of Cooperation (1984)
- Among the most cited works in all of political science

Robert Axelrod
${ }^{1}$ Each round had a 0.00346 probability of ending the game, ensuring on average 200 rounds of play
Axelrod, Robert, 1984, *The Evolutioon of Cooperation

The Evolution of Cooperation

- Axelrod's discussion of successful strategies based on four properties:

1. Niceness: cooperate, never be the first to defect
2. Be Provocable: don't be suckered by being too nice, return defection with defection
3. Don't be envious: focus on maximizing your own score, rather than ensuring your score is higher than your "partner's"
4. Don't be too clever: clarity is essential for others to cooperate with you

- The winning strategy was, famously, TIT FOR TAT, submitted by Anatol Rapoport

Robert Axelrod

The Folk Theorem

The Folk Theorem

- Consider the average payoff to each player each round, depending on the strategies chosen
- e.g. if both Cooperate forever, average payoff is $(3,3)$ - both earn 3 every round

The Folk Theorem

- Consider the average payoff to each player each round, depending on the strategies chosen
- e.g. if both Cooperate forever, average payoff is $(3,3)$ - both earn 3 every round
- Consider the set of feasible average payoff
- e.g. no way to produce average payoff of $(6,6)$
- average payoff of $(2.5,2.5)$ is possible (players alternate between C and D each round)

The Folk Theorem

- Folk theorem: any individually rational and feasible average payoff can be sustained with sufficiently high $\delta(\operatorname{or} \theta)$
- An average payoff is individually rational if it is at least as good as the one-shot Nash equilibrium (Defect, Defect), i.e. $(2,2)$ outcome

Folk Theorem: Simply Put

- Folk theorem (simplified): Many strategies can sustain long-run cooperation if:
- Each player can observe history
- The value of future interactions must be sufficiently important to players
- sufficiently high discount rate δ
- sufficiently high probability of game continuing θ
- If this is true, many strategies can sustain longrun cooperation
- Any in the teal set in the diagram before

- Grim trigger is simply the bare minimum/worst case scenario (and, importantly, easiest to model!)

Assessing the Folk Theorem

- The Good: cooperation is possible, rational, and efficient!
- Any improvement above (D, D) is a Pareto improvement for all players
- The Bad: lack of predictive power
- Anything goes! Almost any outcome can be a sustainable equilibrium
- This is why game theorists use the grim trigger strategy results as the bare minimum
 sufficient strategy for cooperation
- As temptation payoff increases relative to Nash equilibrium, need higher δ or θ to sustain cooperation

