4.5 — Bayesian Players
ECON 316 • Game Theory • Fall 2021
Ryan Safner
Assistant Professor of Economics
✓ safner@hood.edu
○ ryansafner/gameF21
ⓒ gameF21.classes.ryansafner.com

Outline

Bayesian Statistics

- Most people's understanding & intuitions of probability are about the **objective frequency** of events occurring
 - "If I flip a fair coin many times, the probability of Heads is 0.50"
 - "If this election were repeated many times, the probability of Biden winning is 0.60"
- This is known as the **"frequentist"** interpretation of probability
 - And is almost entirely the only thing taught to students (because it's easier to explain)

- Another valid (competing) interpretation is probability represents our **subjective belief** about an event
 - "I am 50% certain the next coin flip will be Heads"
 - "I am 60% certain that Biden will win the election"
 - This is particularly useful for **unique** events (that occur once...and really, isn't that every event in the real world?)
- This is known as the **"Bayesian"** interpretation of probability

- In Bayesian statistics, probability measures the degree of certainty about an event
 - Beliefs range from impossible (p = 0) to certain (p = 1)
- This conditions probability on your
 beliefs about an event

Rev. Thomas Bayes

1702-1761

- The bread and butter of thinking like a Bayesian is **updating your beliefs in response to new evidence**
 - You have some **prior** belief about something
 - New evidence should **update** your belief (level of certainty) about it
 - Updated belief known as your **posterior** belief
- Your beliefs are *not* completelydetermined by the latest evidence, new evidence just *slightly* changes your beliefs, proportionate to how compelling the evidence is
- This is fundamental to modern science and having rational beliefs
 - And some mathematicians will tell you, the *proper* use of statistics

Bayesian Statistics Examples

- You are a bartender. If the next person that walks in is wearing a kilt, what is the probability s/he wants to order Scotch?
- 2. You are playing poker and the player before you raises.
- 3. What is the probability that someone has watched the Superbowl? What if you learn that person is a man?
- 4. You are a policymaker deciding foreign policy, and get a new intelligence report.
- 5. You are trying to buy a home and make an offer, which the seller declines.

 All of this revolves around conditional probability: the probability of some event B occurring, given that event A has already occurred

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

• P(B|A): "Probability of B given A"

• All of this revolves around **conditional probability**: the probability of some event *B*

occurring, given that event A has already occurred

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

 If we know A has occurred, P(A) > 0, and then every outcome that is ¬A ("not A") cannot occur (P(¬A) = 0)

 All of this revolves around conditional probability: the probability of some event B occurring, given that event A has already occurred

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

• All of this revolves around conditional

probability: the probability of some event *B* occurring, given that event *A* has already occurred

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

- If we know A has occurred, P(A) > 0, and then every outcome that is ¬A ("not A") cannot occur (P(¬A) = 0)
 - The only part of *B* which can occur if *A* has occurred is *A* and *B*
 - Since the sample space S must equal 1, we've reduced the sample space to A, so we must rescale by $\frac{1}{P(A)}$

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

If events A and B were independent, then the probability P(A and B) happening would be just P(A) × P(B)
○ P(A|B) = P(A)
○ P(B|A) = P(B)

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

- But if they are *not* independent, it's $P(A \text{ and } B) = P(A) \times P(B|A)$
 - \circ (Just multiplying both sides above by the denominator, P(A))

Conditional Probability and Bayes' Rule

 Bayes realized that the conditional probabilities of two non-independent events are proportionately related

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

Conditional Probability and Bayes' Rule

 Bayes realized that the conditional probabilities of two non-independent events are proportionately related

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

P(A|B)P(B) = P(A and B) = P(B|A)P(A)

Conditional Probability and Bayes' Rule

 Bayes realized that the conditional probabilities of two non-independent events are proportionately related

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

P(A|B)P(B) = P(A and B) = P(B|A)P(A)

Divide everything by P(B), you get, famously,
 Bayes' rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' Rule: Hypotheses and Evidence

- The *A*'s and *B*'s are rather difficult to remember if you don't use this often
- A lot of people prefer to think of **Bayes' rule** in terms of a hypothesis you have (*H*), and new evidence or data *e*

$$P(H|e) = \frac{P(e|H)p(H)}{P(e)}$$

- P(H|e): posterior your hypothesis is correct given the new evidence
- P(e|H): likelihood of seeing the evidence under your hypothesis
- P(H): prior belief in of your hypothesis

Example: Suppose 1% of the population has a rare disease. A test that can diagnose the disease is 95% accurate. What is the probability that a person who takes the test and comes back positive has the disease?

• What would you guess the probability is?

Example: Suppose 1% of the population has a rare disease. A test that can diagnose the disease is 95% accurate. What is the probability that a person who takes the test and comes back positive has the disease?

- P(Disease) = 0.01
- $P(+|\text{Disease}) = 0.95 = P(-|\neg\text{Disease})$
- We know *P*(+|Disease) but want to know *P*(Disease|+)
 - These are not the same thing!
 - Related by Bayes' Rule:

$$P(\text{Disease}|+) = \frac{P(+|\text{Disease})P(\text{Disease})}{P(+)}$$

• P(Disease) = 0.01

• $P(+|\text{Disease}) = 0.95 = P(-|\neg\text{Disease})$

$$P(\text{Disease}|+) = \frac{P(+|\text{Disease})P(\text{Disease})}{P(+)}$$

• What is *P*(+)??

- What is the total probability of *B* in the diagram?
- $P(B) = P(B \text{ and } A) + P(B \text{ and } \neg A)$ $= P(B|A)P(A) + P(B|\neg A)P(\neg A)$
- This is known as the law of total probability

Bayes' Rule Example: Aside

• Because we usually have to figure out P(B) (the denominator), Bayes' rule is often expanded to

 $P(B|A) = \frac{P(A|B)P(A)}{P(B|A)P(A) + P(B|\neg A)P(\neg A)}$

Assuming there are two possibilities (A and ¬A), e.g. True or False

Bayes' Rule Example: Aside

• If there are more than two possibilities, you can further expand it to $\sum_{i=1}^{n} P(B|A_i)P(A_i) \text{ for } n \text{ number of}$

possible alternatives to A

- What is the total probability of +?
- $P(+) = P(+ \text{ and } \text{Disease}) + P(+ \text{ and } \neg \text{Disease})$ $= P(+|\text{Disease})P(\text{Disease}) + P(+|\neg\text{Disease})P(\neg\text{Disease})$
 - P(Disease) = 0.01
 - P(+|Disease) = 0.95

- What is the total probability of +?
- $P(+) = P(+ \text{ and } \text{Disease}) + P(+ \text{ and } \neg \text{Disease})$ $= P(+|\text{Disease})P(\text{Disease}) + P(+|\neg\text{Disease})P(\neg\text{Disease})$
 - P(Disease) = 0.01
 - P(+|Disease) = 0.95
- P(+) = 0.95(0.01) + 0.05(0.99) = 0.0590

\wedge	
\searrow	

	Disease	¬ Disease	Total
+	0.0095	0.0495	0.0590
-	0.0005	0.9405	0.9410
Total	0.0100	0.9900	1.0000

- P(Disease) = 0.01
- $P(+|\text{Disease}) = 0.95 = P(-|\neg \text{Disease}) = 0.95$
- P(+) = 0.0590

- P(Disease) = 0.01
- $P(+|\text{Disease}) = 0.95 = P(-|\neg \text{Disease}) = 0.95$
- P(+) = 0.0590

 $P(\text{Disease}|+) = \frac{P(+|\text{Disease})P(\text{Disease})}{P(+)}$

- P(Disease) = 0.01
- $P(+|\text{Disease}) = 0.95 = P(-|\neg \text{Disease}) = 0.95$
- P(+) = 0.0590

$$P(\text{Disease}|+) = \frac{P(+|\text{Disease})P(\text{Disease})}{P(+)}$$
$$P(\text{Disease}|+) = \frac{0.95 \times 0.01}{0.0590}$$
$$= 0.16$$

- The probability you have the disease is only 16%!
 - Most people vastly overestimate because they forget the base rate of the disease, *P*(Disease) is so low (1%)!

Bayes' Rule and Bayesian Updating

Prior

How probable was our hypothesis

before observing the evidence?

• Bayes Rule tells us how we should update our beliefs given new evidence

How probable is the evidence given that our hypothesis is true?

$P(H \mid e) = \frac{P(e \mid H) P(H)}{P(e)}$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal How probable is the new evidence under all possible hypotheses? $P(e) = \sum P(e | H_i) P(H_i)$

Highly, Highly Recommended

Highly, Highly Recommended

