4.6 - Sequential Bayesian Games ECON 316 • Game Theory • Fall 2021 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/gameF21 ⓒ gameF21.classes.ryansafner.com

Outline

Sequential Bayesian Games

Screening Games

<u>Signaling Example I: Akerlof (1970) — The Market for Lemons</u>

Signaling Example II: Spence (1973) Job-Market Signaling

Signaling Example III: Leeson (2012) Ordeals

<u>Signaling Takeaways</u>

Sequential Bayesian Games

Equilibrium in Sequential Bayesian Games

- We looked at a simultaneous game of incomplete information
- Now let's look at some common models of sequential games with incomplete information, and some famous applications
- Again, typically assume that Player 2 has private information about their "type," that Player 1 does not know

Equilibrium in Sequential Bayesian Games

- We needed Bayes' Rule because we will use it to describe how rational players update their beliefs (about others' type) when presented with new evidence (i.e., the other player makes a move)
- Players share common (prior) belief about likelihood of encountering a player-type (*p*)
- Informed player with private information (their type) will make a move, uninformed player will update their belief about that player's type

Our Previous Bayesian Example as a Signalling Game

- Consider our previous game in sequential form
- A signalling game where Colin moves first
- Rowena observes Colin's move (Cooperate or Defect), but does not know which type Colin is (and thus, the consequences of her own move)
- We could again find what conditions lead to valid pooling equilibria and separating equilibria
 - But I'd rather focus on applications of these famous models

Our Previous Bayesian Example as a Signalling Game

- Essentially, Colin makes a move, either Cooperate or Defect
- Rowena's prior beliefs about Colin's type (p) get updated based on Colin's move
- Then Rowena must decide how to respond, given her (updated) posterior belief about Colin's type

Perfect Bayesian Nash Equilibrium (PBNE)

- A possible solution for a sequential game with incomplete (asymmetric) information is known as an **assessment** which has **two parts**:
- 1. A **behavioral strategy profile**: complete plan of action for each player about how to play at each information set
- 2. A **belief system**: probability distribution over nodes in each information set
 - estimate how likely a player is a particular type, **given** their action

Perfect Bayesian Nash Equilibrium (PBNE)

- An assessment is a **Perfect Bayesian Nash Equilibrium (PBNE)** if it fits both conditions:
- 1. **Sequentially rational** i.e. credible & survives backwards induction
 - at each information set, strategies are optimal given beliefs
- 2. It is consistent with Bayes' Rule
 - beliefs are updated by Bayes' Rule wherever possible
 - "given the other player has played X, how likely are they type I?"
- The analog of **subgame perfect Nash equilibrium**, but with incomplete information

Signaling vs. Screening Games

- Used to explore the economic problem of adverse selection: informed players exploit uninformed players
 - Again, one player has private information (their type), the other doesn't know
- Let Player 1 be the "uninformed player"
- Player 2 be the "informed player" with private information about their **type**

Signaling vs. Screening Games

- Two types of sequential games with adverse selection:
- 1. Screening games: uninformed player moves first
 - Will try to *determine* what type the *other* player is
 - Offer options where informed players can self-select and reveal their type
- 2. Signaling games: informed player moves first
 - Will try to *signal* their type to uninformed player
 - But "bad"-types also want to *signal* they are "good"-types!

Screening Games

A Biblical Example of Screening

One day two women came to King Solomon, and one of them said:

Your Majesty, this woman and I live in the same house. Not long ago my baby was born at home, and three days later her baby was born. Nobody else was there with us.

One night while we were all asleep, she rolled over on her baby, and he died. Then while I was still asleep, she got up and took my son out of my bed. She put him in her bed, then she put her dead baby next to me.

In the morning when I got up to feed my son, I saw that he was dead. But when I looked at him in the light, I knew he wasn't my son.

"No!" the other woman shouted. "He was your son. My baby is alive!"

"The dead baby is yours," the first woman yelled. "Mine is alive!"

<u>1 Kings 3:16-27</u>

A Biblical Example of Screening

They argued back and forth in front of Solomon, until finally he said, "Both of you say this live baby is yours. Someone bring me a sword."

A sword was brought, and Solomon ordered, "Cut the baby in half! That way each of you can have part of him."

"Please don't kill my son," the baby's mother screamed. "Your Majesty, I love him very much, but give him to her. Just don't kill him."

The other woman shouted, "Go ahead and cut him in half. Then neither of us will have the baby."

Solomon said, "Don't kill the baby." Then he pointed to the first woman, "She is his real mother. Give the baby to her."

<u>1 Kings 3:16-27</u>

A Modern Example of Screening

Screening to Mitigate Adverse Selection

Price Discrimination to Mitigate Adverse Selection

- 2nd-degree price discrimination: seller doesn't know what type of buyer they are selling to (low/elastic vs. high/inelastic willingness to pay)
- If it knew, it could offer different customers different prices based on some observable characteristic (1st- and 3rd-degree PD)

Price Discrimination to Mitigate Adverse Selection

- Common example: block pricing & quantity discounts
 - Firm offers different prices for different quantities of the good
 - Charge customers that buy larger quantities a lower price per unit
 - Must be incentive—compatible: lowvolume customers must want to pay the higher price for fewer than the discounted price for more

Price Discrimination to Mitigate Adverse Selection

- Common example: versioning
 - Firm offers different prices for different qualities of the good
 - Charge customers that higher price for higher quality
 - Must be incentive—compatible: high-WTP/inelastic customers must want to pay the higher price instead of the discounted price

"What the company is trying to do is to prevent the passengers who can pay the second class fare from traveling third class; It hits the poor, not because it

Signaling Example I: Akerlof (1970) — The Market for Lemons

- Consider the used car market
- Two types of used cars
 - "Lemon": low-quality car
 - "Peach": high-quality car
- Suppose you, the buyer value a peach at *H* and a lemon at *L* dollars
- You cannot tell a good car from a bad one, but believe some fraction *q* of cars are Peaches

- Suppose a particular car has an asking price of *p*
- The dealer knows the quality of the car, but you do not
- A bad car needs additional work, costing *c*, to make it better
- The dealer decides whether or not to put a car on sale, then you decide whether or not to buy

- Nature decides whether Dealer has a good car (q) or bad car (1 q)
- Note your information set:
 - You are unable to determine if a Dealer choosing to Offer a good or bad car

- Now let's search for Perfect Bayesian Nash equilibria (PBNE)
- Solve for conditions under which the following could be PBNE:
 - Pooling eq. I: Both Types of Dealer Offer
 Pooling eq. II: Both Types of Dealer Hold
 Separating eq. I: Good: Offer and Bad: Don't
 Separating eq. II: Good: Don't and Bad: Hold

- Suppose **both types of Dealer offer**
- Bayes' Rule implies:

- Suppose **both types of Dealer offer**
- Bayes' Rule implies:

$$P(\text{good}|\text{offer}) = \frac{P(\text{offer}|\text{good})P(\text{good})}{P(\text{offer})}$$

Bad

Hold

0, 0 ○

1-a

D.2

Offer

L-p, p-c

∙О <mark>О</mark>. -с

Buy

Don't

Y.2

Suppose both types of Dealer offer

• Bayes' Rule implies:

P(good|offer) =

P(good|offer)

Suppose **both types of Dealer offer**

- The probability that an offer is good is q
- If you buy a car based on your beliefs, your expected payoff is:

E[Buy] = q(H - p) + (1 - q)(L - p)

Akerlof, George A, 1970, "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," *Quarterly Journal of Economics* 84(3): 488-500

Pooling Scenario I: Both Types of Dealer Offer

- Suppose **both types of Dealer offer**
- The probability that an offer is good is \boldsymbol{q}
- If you buy a car based on your beliefs, your expected payoff is:

E[Buy] = q(H - p) + (1 - q)(L - p)

Sequential rationality for You: Buy if
 E[*Buy*] > 0

- Suppose both types of Dealer offer
- The probability that an offer is good is q
- If you buy a car based on your beliefs, your expected payoff is:

E[Buy] = q(H - p) + (1 - q)(L - p)

- Sequential rationality for You: Buy if E[Buy] > 0
- Sequential rationality for Dealer: Offer if p > c

- Suppose **both types of Dealer offer**
- If p > c and E[Buy] > 0, the following is a
 PBNE:
 - Behavioral strategy: {Buy, (Good: Offer, Bad: Offer)}
 - **Belief system**: P(good|offer) = q

Pooling Equilibrium II: Both Types of Dealer Hold

• Suppose both types of Dealer hold

Pooling Equilibrium II: Both Types of Dealer Hold

- Suppose **both types of Dealer hold**
- For this to be sequentially rational, You must always Not Buy
 - Otherwise, Good Dealer would want to Offer
- Under what beliefs would you choose
 Don't? Your information set is never
 reached, so

Pooling Equilibrium II: Both Types of Dealer Hold

- Suppose **both types of Dealer hold**
- For this to be sequentially rational, You must always Not Buy
 - Otherwise, Good Dealer would want to Offer
- Under what beliefs would you choose Don't? Your information set is never reached, so

$$p(\text{Good}|\text{Offer}) = 0$$

Pooling Equilibrium II: Both Types of Dealer Hold

- Suppose both types of Dealer hold
- The following is a **PBNE**:
 - Behavioral strategy: {Don't, (Good: Hold, Bad: Hold)}
 - **Belief system**: P(good|offer) = 0
- A market failure: the market unravels because of a few lemons

Suppose Good Dealers offer and Bad
 Dealers hold

Akerlof, George A, 1970, "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," Quarterly Journal of Economics 84(3): 488-500

- Suppose Good Dealers offer and Bad
 Dealers hold
- Bayes' Law would imply your beliefs must be:

- Suppose Good Dealers offer and Bad
 Dealers hold
- Bayes' Law would imply your beliefs must be:

- You buy if any type of Dealer offers
- Good Dealer wants to Offer since You will Buy
- Bad Dealer will Hold if p < c

- Suppose Good Dealers offer and Bad
 Dealers hold
- The following is a **PBNE**:
 - Behavioral strategy: {Buy, (Good: Offer, Bad: Hold)}
 - **Belief system**: P(good|offer) = 0
- This is the important PBNE, we will return to it

Suppose Good Dealers hold and Bad
 Dealers offer

Akerlof, George A, 1970, "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," Quarterly Journal of Economics 84(3): 488-500

- Suppose Good Dealers hold and Bad
 Dealers offer
- Bayes' Law would imply your beliefs:

- Suppose Good Dealers hold and Bad
 Dealers offer
- Bayes' Law would imply your beliefs:

- You Don't Buy if any Dealer Offers
 - Good Dealer wants to Hold since You Don't Buy
 - Bad Dealer would want to switch to Hold since You Don't Buy

- Suppose Good Dealers hold and Bad
 Dealers offer
- Bayes' Law would imply your beliefs:

- You Don't Buy if any Dealer Offers
 - Good Dealer wants to Hold since You
 Don't Buy
 - Bad Dealer would want to switch to Hold since You Don't Buy

- Suppose Good Dealers hold and Bad
 Dealers offer
- There is **no PBNE** where {(Good: Bad, Bad: Offer)}

Akerlof, George A, 1970, "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," *Quarterly Journal of Economics* 84(3): 488-500

The Market for Lemons

- Conditions under which the following could be PBNE:
- 1. Pooling eq. I: Both Types of Dealer Offer
 - You Buy
 - When p < c, E[Buy] > 0, and P(Good|Offer) = 1
- 2. Pooling eq. II: Both Types of Dealer Hold
 - You Don't Buy
 - When P(Good|Offer) = 0
- 3. Separating eq. I: Good: Offer and Bad: Don't
 - You Buy
 - When c > p, P(Good|Offer) = 1
- 4. Separating eq. II: Good: Don't and Bad: Hold
 - Impossible

The Market for Lemons

- The desirable separating equilibrium (Good Dealers offer; Bad Dealers hold) is achieved via a costly signal
 - $\circ~$ If p < c, Dealers will only offer cars if they are ${\bf good}$
 - Too costly for a **bad** dealer to offer a car
- In real life markets:
 - CarFax
 - \circ Warranties

Market-Solutions to Asymmetric Info

George Akerlof

1940-

Economics Nobel 2001

"Numerous institutions arise to counteract the effects of quality uncertainty. One obvious institution is guarantees. Most consumer durables carry guarantees to ensure the buyer of some normal expected quality. One natural result of our model is that the risk is borne by the seller rather than by the buyer," (p. 499).

"A second example of an institution which counteracts the effects of quality uncertainty is the brand-name good. Brand names not only indicate quality but also give the consumer a means of retaliation if the quality does not meet expectations," (pp.499-500).

Akerlof, George A, 1970, "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," Quarterly Journal of Economics

84(3): 488-500

Market-Solutions to Asymmetric Info

George Akerlof

1940—

Economics Nobel 2001

"Chains - such as hotel chains or restaurant chains are similar to brand names, (p.500)

"Licensing practices also reduce quality uncertainty," (p.500).

Akerlof, George A, 1970, "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," *Quarterly Journal of Economics*

84(3): 488-500

Signaling Example II: Spence (1973) Job-Market Signaling

The Economics of Higher Education

- Workers with more education earn higher wages, the question is *why*:
- Human capital theory
 - on the margin, higher education
 increases workers' productivity
 - workers with more education *become* more productive
 - workers weigh MB and MC of buying additional amounts of education

The Economics of Higher Education

- Workers with more education earn higher wages, the question is *why*:
- Signaling theory
 - on the margin, higher education *does not* increase workers' productivity
 - obtaining higher education *signals* (pre-existing) ability
 - only workers with already-high ability get higher education

"To hire someone, then, is frequently to purchase a lottery. In what follows, I shall assume the employer pays the certain monetary equivalent of the lottery to the individual as wage. If he is risk-neutral, the wage is taken to be the individual's marginal contribution to the hiring organization.

A. Michael Spence

Spence, A Michael, 1973, "Job Market Signaling" *Quarterly Journal of Economics* 87(3): 355-374

1943—

Economics Nobel 2001

A. Michael Spence

1943—

Economics Nobel 2001

"Primary interest attaches to how the employer perceives the lottery, for it is these perceptions that determine the wages he offers to pay. We have stipulated that the employer cannot directly observe the marginal product prior to hiring. What he does observe is a plethora of personal data in the form of observable characteristics and attributes of the individual, and it is these that must ultimately determine his assessment of the lottery he is buying. (The image that the individual presents includes education, previous work, race, sex, criminal and service records, and a host of other data.) This essay is about the endogenous market process whereby the employer requires (and the individual transmits) information about the potential employee, which ultimately determines the implicit lottery involved in hiring, the offered wages, and in the end the allocation of jobs to people and people to jobs in the market," (pp.356-357).

A. Michael Spence

1943—

Economics Nobel 2001

"Of those observable, personal attributes that collectively constitute the image the job applicant presents, some are immutably fixed, while others are alterable. For example, education is something that the individual can invest in at some cost in terms of time and money. On the other hand, race and sex are not generally thought to be alterable. I shall refer to observable, unalterable attributes as indices, reserving the term signals for those observable characteristics attached to the individual that are subject to manipIllation by him. Some attributes, like age, do change, but not at the discretion of the individual. In my terms, these are indices," (pp.357).

A. Michael Spence

1943—

Economics Nobel 2001

"Signals, on the other hand, are alterable and therefore potentially subject to manipulation by the job applicant. Of course, there may be costs of making these adjustments. Education, for example, is costly. We refer to these costs as signaling costs. Notice that the individual, in acquiring an education, need not think of himself as signaling. He will invest in education if there is sufficient return as defined by the offered wage sched~le.I~ndividuals, then, are assumed to select signals (for the most part, I shall talk in terms of education) so as to maximize the difference between offered wages and signaling costs," (357).

- A very simple numerical example
- Two groups I (low-ability) and II (highability) with different marginal products that firms cannot directly observe
 - \circ Group I is q_1 fraction of population
- Each can choose to get y amount of education which costs y to Group I, $\frac{y}{2}$ to Group II

\wedge	
\searrow	

TABLE I Data of the Model

Group	Marginal product	Proportion of population	Cost of education level y	
 I	1	q_1	y	
II	2	$1 - q_1$	y/2	

- Assume labor markets are competitive
 - A worker's wage is equal to their expected output
- If employers could know a worker's ability:
 - $\circ~$ Wages would then be:
 - $\circ~1$ for Group I (low ability)
 - $\circ~2$ for Group II (high ability)
- In this scenario, nobody gets any education!

DATA OF THE MODEL				
Group	Marginal product	Proportion of population	Cost of educa- tion level y	

 q_1

 $1 - q_1$

 \boldsymbol{y}

y/2

1

 $\mathbf{2}$

Ι

Π

TABLE I

- If employers *cannot* determine a worker's ability:
- Firm would have to offer expected marginal product to all workers:

$$E[W] = 1(q_1) + 2(1 - q_1)$$
$$E[W] = 2 - q_1$$

,	ΤА	BLE	I	
Data	OF	THE	Model	

Group	Marginal product	Proportion of population	Cost of educa- tion level y	
 I	1	q_1	y	
II	2	$1 - q_1$	y/2	

• If firms could (*only*) observe a worker's education level:

DATA OF THE MODEL					
Group	Marginal product	Proportion of population	$\begin{array}{c} \text{Cost of educa-} \\ \text{tion level } y \end{array}$		
I	1	q_1	y		

 $1 - q_1$

y/2

 $\mathbf{2}$

Π

- Wages only depend on level of education
- To offer a wage, firms must form **beliefs** about workers' ability (given their education level)

- Suppose firms believe there is some amount of education y^{*} such that if:
 - \circ a worker has *less than* y^* education, they are low ability (Group I), thus firm offers them wage of 1
 - a worker has at least y^* education, they are high ability (Group II), thus firm offers them wage of 2

FIGURE II

Offered Wages as a Function of Level of Education

- a worker has *less than* y^* education, they are low ability (Group I)
- a worker has at least y^* education, they are high ability (Group II)
- Then Group I will get no education y = 0 (so long as $2 - y^* < 1$), and Group II will get y^* education (so long as $2 - \frac{y^*}{2} > 1$)
- This signalling equilibrium occurs when $1 < y^* < 2$

FIGURE III

Optimizing Choice of Education for Both Groups

A. Michael Spence

1943—

"Increases in the level of y^{\star} hurt Group II, while, at the same time, members of Group I are unaffected. Group I is worse off than it was with no signaling at all. For if no signaling takes place, each person is paid his unconditional expected marginal product, which is just $[2 - q_1]$. Group II may also be worse off than it was with no signaling. Assume that the proportion of people in Group I is 0.5. Since $y^* > 1$ and the net return to the member of Group I1 is $2 - \frac{\star}{2}$, in equilibrium his net return must be below 1.5, the no-signaling wage. Thus, everyone would prefer a situation in which there is no signaling," (p.364).

Economics Nobel 2001

A. Michael Spence

1943-

"Given the signaling equilibrium, the education level y^* , which defines the equilibrium, is an entrance requirement or prerequisite for the high-salary job - or so it would appear from the outside. From the point of view of the individual, it is a prerequisite that has its source in a signaling game. Looked at from the outside, education might appear to be productive. It is productive for the individual, but, in this example, it does not increase his real marginal product at all," (p.364).

Spence, A Michael, 1973, "Job Market Signaling" *Quarterly Journal of Economics* 87(3): 355-374

Economics Nobel 2001

- Suppose there are two types of workers:
 - $\circ~$ H: high ability, in proportion q $\circ~$ L: low ability, in proportion 1-q
- Workers output (productivity) is equal to
 - $\circ \; H$ if high ability
 - $\circ L$ if low ability

- Workers choose to get (high) education or no (low) education
 - $\circ~$ Low education costs nothing
 - $\circ~$ High education costs:
 - *c_H* to high ability worker
 - c_L to low ability worker
- Education has **no impact** on worker's output (productivity)!

- Assume labor markets are competitive
 - A worker's wage is equal to their expected output
- If employers could know a worker's ability:
 - $\circ~$ Wages would then be:
 - $\circ w_H = H$ for high ability
 - $\circ w_L = L$ for low ability
- In this scenario, nobody gets any education!

- If employers could *only* observe a worker's education level:
 - Wages only depend on level of education
- To offer a wage, employers must form beliefs about workers' ability (given their education level)

- Consider the conditions for one **separating** equilibrium where:
 - high-ability workers acquire (more) education
 - low-ability workers acquire no (or less) education
- Employers offer wages:

 $\circ w_H = H$ $\circ w_L = L$

- Employer beliefs:
 - *P*(High Ability|Education) = 1 *P*(Low Ability|No Education) = 1

- High-ability workers: choose to get Education if $H c_H > L$
- Low-ability workers: choose to get No Education if $L > H c_L$
- Main condition: $c_H < H L < c_L$

- Higher education contributes nothing to productivity, but is *more* costly for low ability workers
 - High ability workers incur the cost of high education just to signal they are high ability
 - Low ability workers cannot afford to incur the cost, and don't get high education
- In signalling equilibrium, high ability workers are worse off by c_H

The Case Against Education

Why the Education System Is a Waste of Time and Money

Bryan Caplan

Convrighted Materia

Signaling Example III: Leeson (2012) Ordeals

Obligatory

Ordeals

Peter Leeson

1979-

"For 400 years the most sophisticated persons in Europe decided difficult criminal cases by asking the defendant to thrust his arm into a cauldron of boiling water and fish out a ring. If his arm was unharmed, he was exonerated. If not, he was convicted. Alternatively, a priest dunked the defendant in a pool. Sinking proved his innocence; floating proved his guilt. People called these trials ordeals. No one alive today believes ordeals were a good way to decide defendants' guilt. But maybe they should...Medieval judicial ordeals achieved what they sought: a way of accurately assigning guilt and innocent where traditional means couldn't."

Ordeals: *Why* They Worked

- Ordeals were only used when there was uncertainty about a person's innocence or guilt
- Obvious cases were settled with evidence and witnesses

Ordeals: *Why* They Worked

- Accused is either Innocent (with probability *p*) or Guilty
 - Choice is a **message** to Priest:
 Undergo or Refuse an ordeal
- Priest observes choice, but does not know *true* innocence or guilt
- Must find a signal such that payoffs create a separating equilibrium where (Innocent: Undergo, Guilty: refuse)

- Ordeals "worked" because of iudecium
 Dei: God would protect the truly innocent and expose the guilty during the ordeal
 - Specifically, worked because of people's *believeds* in *iudecium Dei*
- Priests didn't *actually* leave it in God's hands, but cleverly leveraged people's belief in *iudecium Dei*

- If people believe in *iudecium Dei*
- and Accused ranks payoffs:
 - Truly innocent: Undergo and pass
 Truly guilty: Refuse and confess
 Truly innocent: Refuse
 Truly guilty: Undergo and fail
- Then **Priest**'s updated beliefs are:
 - p(Innocent|Undergo) = 1
 p(Guilty|Refuse) = 1

- Conditional on observing the Accused's decision to undertake ordeal, Priest knows person is (very probably) innocent
- Priest rigs the Ordeal so the accused "miraculously" passes it
- Events were religious, sanctimonious, ritualized, Priest had lots of (trusted) discretion

- Ordeals *only* work for people who believe in *iudicium Dei*
 - Reserved for the most difficult cases with no evidence or witnesses
- What about "skeptics"?
 - Priest had to let a proportion of those undertaking ordeal fail them (even if they were innocent!)
 - Maintains an equilibrium of belief in *iudicium Dei*
- *Known* non-believers (or non-Christians) were *not* presented with Ordeals as an option

- In 1215, Fourth Lateran Council rejects the legitimacy of judicial ordeals, banned priests from administering them
 - Belief in *iudicium Dei* evaporates
 - Ordeals would no longer work –
 requires the superstition as sorting mechanism
- Today we have technology that can accurately separate innocence and guilt in very hard cases (e.g. DNA evidence)

Ordeals

Peter Leeson

"Though rooted in superstition, judicial ordeals weren't irrational." Expecting to emerge from ordeals unscathed and exonerated, innocent persons found it cheaper to undergo ordeals than to decline them. Expecting to emerge...boiled, burned, or wet and naked and condemned, guilty persons found it cheaper to decline ordeals than to undergo them. [Priests] knew that only innocent persons would want to undergo ordeals...[and] exonerated probands whenever they could. Medieval judicial ordeals achieved what they sought: they accurately assigned guilt and innocence where traditional means couldn't."

Leeson, Peter T, 2012, "Ordeals," Journal of Law and Economics 55: 691–714

The Law and Economics of Superstitution: Persistance

The Law and Economics of Superstitution: Persistance

Signaling Takeaways

Ś

Signalling in Biology

- The peacock's famous tail is a quintessential example
- Why do we observe traits in species that *reduce* fitness?
 - Because they are costly signals!
- Handicap Principle: reliable signals **must** be costly to the signaler such that it is prohibitively costly for a weaker individual

Zahavi, A, 1975, "Mate selection - a selection for a handicap," *Journal of Theoretical Biology*

Grafen, A, 1990, "Biological signals as handicaps," Journal of Theoretical Biology

- (Credible) signals and reputation both encourage cooperation, but via different mechanisms
- Reputation is an **ex post** enforcement mechanism for cooperation via a **threat**

"If you cheat, then I will sever our existing relationship in the future and tell all my friends not to trust you"

- Folk theorem requires repeat interaction and high discount rates
- Limited to your social network, where you can spread the word

- Signaling is an **ex ante** *commitment* via a **promise**
 - "I, a stranger, am demonstrating to you before we establish a relationship that I am trustworthy"
- A *good* (credible) signal:
 - Must be costly, not free
 - But more costly for "bad" type than "good" type
- A *bad* (non-credible) signal:
 - May be free
 - Or may have same cost for all types

Venetian trader Marco Polo in Yuan Dynasty dress